Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses.
نویسندگان
چکیده
Locally projecting GABAergic interneurons are the major providers of inhibition in the neocortex and play a crucial role in several brain functions. Neocortical interneurons are connected via electrical and chemical synapses that may be crucial in modulating complex network oscillations. We investigated the properties of spontaneous and evoked IPSCs in two morphologically and physiologically identified interneuron subtypes, the fast-spiking (FS) and low threshold-spiking (LTS) cells in layer V of rodent sensorimotor cortex. We found that IPSCs recorded in FS cells were several orders of magnitude more frequent, larger in amplitude, and had faster kinetics than IPSCs recorded in LTS cells. GABA(A) receptor alpha- and beta-subunit selective modulators, zolpidem and loreclezole, had different effects on IPSCs in FS and LTS interneurons, suggesting differential expression of GABA(A) receptor subunit subtypes. These pharmacological data indicated that the alpha1 subunit subtype is poorly expressed by LTS cells but makes a large contribution to GABA(A) receptors on FS cells. This was confirmed by experiments performed in genetically modified mice in which the alpha1 subunit had been made insensitive to benzodiazepine-like agonists. These results suggest that differences in IPSC waveform are likely attributable to distinctive expression of GABA(A) receptor subunits in FS and LTS cells. The particular properties of GABAergic input on different interneuronal subtypes might have important consequences for generation and pacing of cortical rhythms underlying several brain functions. Moreover, selective pharmacological manipulation of distinct inhibitory circuits might allow regulation of pyramidal cell activities under specific physiological and pathophysiological conditions.
منابع مشابه
Maternal Loss of Ube3a Produces an Excitatory/Inhibitory Imbalance through Neuron Type-Specific Synaptic Defects
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A. AS model mice, which carry a maternal Ube3a null mutation (Ube3a(m-/p+)), recapitulate major features of AS in humans, including enhanced seizure susceptibility. Excitatory neurotransmission onto neocortical pyramidal neurons is diminished in Ube3a(m-/p+) mice, seemingly at odds w...
متن کاملModulating excitation through plasticity at inhibitory synapses
Learning is believed to depend on lasting changes in synaptic efficacy such as long-term potentiation and long-term depression. As a result, a profusion of studies has tried to elucidate the mechanisms underlying these forms of plasticity. Traditionally, experience-dependent changes at excitatory synapses were assumed to underlie learning and memory formation. However, with the relatively more ...
متن کاملInterneuron diversity series: inhibitory interneurons and network oscillations in vitro.
In vitro models of rhythms of cognitive relevance, such as gamma (30-80 Hz) and theta (5-12 Hz) rhythms in the hippocampus, demonstrate an absolute requirement for phasic inhibitory synaptic transmission. Such rhythms can occur transiently, of approximately 1 s duration, or persistently, lasting for many hours. In the latter case, stable patterns of interneuron output, and their postsynaptic co...
متن کاملUnconventional Transmission at Conventional Synapses of an Inhibitory Interneuron
The AII amacrine cell (AII) is a key information hub in the retina, allowing rod-driven signals to piggyback onto cone-dominated circuitry. In this issue, Balakrishnan et al. (2015) use capacitance recordings to unravel mechanisms of inhibitory synaptic transmission by AIIs.
متن کاملInvolvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex
To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings - combined with biocytin labelling - were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II-V of rat (postnatal days 17-22) sensorimotor cortex. The voltage dependency of the amp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 29 شماره
صفحات -
تاریخ انتشار 2003